JEOLLANAM-DO PROVINCE, South Korea, Dec. 18, 2025 /PRNewswire/ — Single-phase power factor correction (PFC) circuits—a kind of front-end AC/DC converters—are ubiquitousJEOLLANAM-DO PROVINCE, South Korea, Dec. 18, 2025 /PRNewswire/ — Single-phase power factor correction (PFC) circuits—a kind of front-end AC/DC converters—are ubiquitous

Chonnam National University Researchers Propose Innovative Voltage-Loop Control for Power Factor Correction

JEOLLANAM-DO PROVINCE, South Korea, Dec. 18, 2025 /PRNewswire/ — Single-phase power factor correction (PFC) circuits—a kind of front-end AC/DC converters—are ubiquitous in a variety of consumer electronic devices, including laptop adapters, LED driver power supplies, and portable chargers. They enhance the current quality drawn from the source, delivering stable DC voltage with high efficiency.

However, current sensors in traditional boost PFC converters introduce issues such as noise susceptibility, signal delays, increased hardware complexity, and potential sensor failures that can degrade system reliability and lifespan. By eliminating current sensors, the proposed sensorless strategy reduces these risks, improves noise immunity, and decreases hardware failure points, leading to enhanced reliability and potentially longer-lasting power adapters and consumer electronics.

In a remarkable breakthrough achievement, a team of researchers from South Korea and China, led by Sung-Jun Park, a Professor from the Department of Electrical Engineering at Chonnam National University, has successfully demonstrated a new control method that eliminates the need for a current sensor. Their findings were made available online and have been published in the journal IEEE Transactions on Consumer Electronics on 30 September 2025.

In this study, the team proposes a simple and reliable single voltage loop current sensorless PFC control strategy. They derive the expression for the duty cycle—which consists of a feedforward component and a control component—by leveraging the fundamental equation of inductor voltage. Notably, delay compensation helps mitigate the effect of phase delay on input current distortion in the proposed control strategy.

“In this way, we specifically identified and solved a common issue in digital control systems: phase delay caused by signal processing. This delay distorts the input current. Our built-in compensation technique effectively counteracts this, which is a key reason for our method’s high-power quality,” remarks Prof. Park.

The novel technology eliminates complex observers and mathematical models, resulting in lower component cost, simpler circuit design, and a smaller size. This reduces maintenance by minimizing parts prone to wear or recalibration, enhancing long-term efficiency compared to sensor-based solutions. Additionally, its low sensitivity to circuit parameter variations ensures reliability and suitability for mass production, allowing manufacturers to easily integrate the control strategy into existing production lines using standard digital signal processors without major redesign or added inventory.

This technology suits AC/DC power supplies in consumer electronics, validated on a 1.3 kW prototype achieving near-unity power factor (up to 0.9998) and low total harmonic distortion (THD) (2.12% at full load)—matching or exceeding sensor-based methods. By eliminating sensors and components, it enables smaller, cost-effective designs. Prof. Park explains, “By simplifying the power circuitry and reducing component count, chargers and power adapters for everything from laptops to kitchen appliances can become more compact and portable. As millions of electronic devices draw cleaner, sinusoidal current—with high power factor and low THD—from the wall socket, it reduces stress on the power grid. Lastly, cheaper and more reliable power supplies could mean lower upfront costs for consumers, furthering electric vehicles and renewable energy systems.”

Reference
Title of original paper: A Simple Current Sensorless Control Method for Boost PFC
Journal: IEEE Transactions on Consumer Electronics
DOI: 10.1109/TCE.2025.3615203

About the institute
https://global.jnu.ac.kr/jnumain_en.aspx

Media Contact:
Minji Son
82-62-530-5191
406532@email4pr.com

Cision View original content to download multimedia:https://www.prnewswire.com/news-releases/chonnam-national-university-researchers-propose-innovative-voltage-loop-control-for-power-factor-correction-302646127.html

SOURCE Chonnam National University

Market Opportunity
LoopNetwork Logo
LoopNetwork Price(LOOP)
$0.00948
$0.00948$0.00948
-4.81%
USD
LoopNetwork (LOOP) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Buterin pushes Layer 2 interoperability as cornerstone of Ethereum’s future

Buterin pushes Layer 2 interoperability as cornerstone of Ethereum’s future

Ethereum founder, Vitalik Buterin, has unveiled new goals for the Ethereum blockchain today at the Japan Developer Conference. The plan lays out short-term, mid-term, and long-term goals touching on L2 interoperability and faster responsiveness among others. In terms of technology, he said again that he is sure that Layer 2 options are the best way […]
Share
Cryptopolitan2025/09/18 01:15
Trump rethinks China tech curbs amid Nvidia H200 review

Trump rethinks China tech curbs amid Nvidia H200 review

Trump administration has started reviewing license applications to ship Nvidia's H200 AI chips to China with a 25% fee.
Share
Cryptopolitan2025/12/19 15:41
Polygon Tops RWA Rankings With $1.1B in Tokenized Assets

Polygon Tops RWA Rankings With $1.1B in Tokenized Assets

The post Polygon Tops RWA Rankings With $1.1B in Tokenized Assets appeared on BitcoinEthereumNews.com. Key Notes A new report from Dune and RWA.xyz highlights Polygon’s role in the growing RWA sector. Polygon PoS currently holds $1.13 billion in RWA Total Value Locked (TVL) across 269 assets. The network holds a 62% market share of tokenized global bonds, driven by European money market funds. The Polygon POL $0.25 24h volatility: 1.4% Market cap: $2.64 B Vol. 24h: $106.17 M network is securing a significant position in the rapidly growing tokenization space, now holding over $1.13 billion in total value locked (TVL) from Real World Assets (RWAs). This development comes as the network continues to evolve, recently deploying its major “Rio” upgrade on the Amoy testnet to enhance future scaling capabilities. This information comes from a new joint report on the state of the RWA market published on Sept. 17 by blockchain analytics firm Dune and data platform RWA.xyz. The focus on RWAs is intensifying across the industry, coinciding with events like the ongoing Real-World Asset Summit in New York. Sandeep Nailwal, CEO of the Polygon Foundation, highlighted the findings via a post on X, noting that the TVL is spread across 269 assets and 2,900 holders on the Polygon PoS chain. The Dune and https://t.co/W6WSFlHoQF report on RWA is out and it shows that RWA is happening on Polygon. Here are a few highlights: – Leading in Global Bonds: Polygon holds 62% share of tokenized global bonds (driven by Spiko’s euro MMF and Cashlink euro issues) – Spiko U.S.… — Sandeep | CEO, Polygon Foundation (※,※) (@sandeepnailwal) September 17, 2025 Key Trends From the 2025 RWA Report The joint publication, titled “RWA REPORT 2025,” offers a comprehensive look into the tokenized asset landscape, which it states has grown 224% since the start of 2024. The report identifies several key trends driving this expansion. According to…
Share
BitcoinEthereumNews2025/09/18 00:40