In the report "State of AI 2025," Messari dedicates an entire chapter to Decentralized AI (deAI), defining it as a necessary complement.In the report "State of AI 2025," Messari dedicates an entire chapter to Decentralized AI (deAI), defining it as a necessary complement.

Decentralized AI: what it is, how it works, and why it will be central to the intelligence economy

decentralized ai deai

In the report “State of AI 2025”, Messari dedicates an entire chapter to Decentralized AI (deAI), defining it not as an ideological alternative to traditional AI, but as a necessary complement to ensure transparency, security, and global participation.

In a world where models become black boxes and the power of private labs grows, the role of deAI is not theoretical: it is a structural response to the challenges of the new order of intelligence.

Artificial intelligence is becoming the most strategic digital infrastructure on the planet. However, as tech giants consolidate their dominance, a parallel movement is emerging that aims to build a radically different AI: open, verifiable, permissionless, and distributed.

What is Decentralized AI (deAI)?

The deAI is an AI system built on distributed networks, where:

  • data can be collected, labeled, and exchanged in a permissionless manner;
  • the computation is performed on global networks of independent GPUs;
  • the models can be trained and used in a coordinated manner, without a single controlling authority;
  • privacy, verifiability, and reputation are ensured through blockchain, cryptography, and attestation systems;
  • AI agents can transact, identify themselves, and collaborate in a trustless environment.

In other words:

DeAI is the infrastructure that enables the creation of an open AI “for anyone and by anyone,” without having to rely on a private giant.

Why does deAI become necessary?

Messari divides the reasons into two categories: philosophical and practical.

🔹 Philosophy

  1. Concentration of Power
    Centralized AI grants enormous control to a few companies (OpenAI, Google, Anthropic). This influences narratives, data access, technological standards, and even social processes.
  2. Opacity
    We do not know how the models were trained, what data they use, or what biases they incorporate.
  3. Limited trust
    There are no verifiable guarantees that the model provided is as claimed or that it processes data correctly.

🔹 Practice

  1. Global Coordination
    Blockchains enable the coordination of millions of devices and contributors without the need for trust.
  2. On-chain Verifiability
    Identity, reputation, model status, and integrity can be recorded immutably.
  3. Native Payments
    AI agents require instant payments, microtransactions, and immediate settlement: here, crypto is indispensable.
  4. Scalability through distributed networks
    deAI leverages existing hardware (gaming PCs, edge devices, small data centers), not just hyperscaler GPUs.

The deAI Stack: The 6 Layers Comprising the Ecosystem

The report details the technological stack of deAI, consisting of 6 interconnected layers: Data → Compute → Training → Privacy/Verification → Agents → Applications.

Let’s examine them one by one.

1. Data Layer

The heart of every AI system is the dataset.
In deAI, data is collected, labeled, stored, and exchanged through distributed networks.

Main activities:

  • data collection (video, audio, sensors, real interactions)
  • labeling through incentivized marketplaces
  • cleaning & preprocessing
  • storage on distributed networks (Filecoin, Arweave, Jackal)
  • data marketplaces (Ocean, Vana, Cudis)

Decentralization allows:

  • greater data diversity
  • direct financial incentives to contributors
  • verifiability (provenance, timestamp, identity)
  • reduction in the cost of proprietary datasets

With the “data famine” anticipated by 2030, this layer becomes crucial.

2. Compute Layer

This is where the most expensive part of AI takes place: performing training and inference.

Decentralized Compute Networks (DCN):

  • Akash
  • Render
  • io.net
  • Aethir
  • Hyperbolic
  • EigenCloud
  • Exabits

The main advantage: they make on-demand compute available at market prices, not dictated by a cloud provider.

Historically ineffective for large-scale training (due to latencies and synchronizations), today DCNs are perfect for serving inference, because:

  • requires less communication between GPUs
  • can be executed on heterogeneous hardware
  • is the segment expected to represent 50–75% of the compute demand by 2030

3. Training & Inference Layer

Messari makes a clear distinction:

Pre-training

Extremely difficult to decentralize:
requires enormous datasets, tight synchronization, and extremely high bandwidth.

Post-training (SFT / RLHF / RL)

Perfect for distributed networks:

  • more asynchrony
  • less communication
  • more scalability
  • possibility of data crowdsourcing

Decentralized Inference

It is the missing link that makes deAI usable in real life.

Examples cited in the report:

  • Prodia
  • Declines
  • Fortytwo Network
  • dria
  • inference.net

4. Privacy & Verification Layer

This is where the most complex cryptographic technologies come into play.

Fundamental Techniques:

  • ZKML (zero-knowledge machine learning)
  • Optimistic ML (verification through challenge period)
  • TEE-based ML (trusted execution environments)
  • FHE (fully homomorphic encryption)
  • MPC (multi-party computation)
  • Federated learning

Objective:

Ensure that a model has been calculated correctly, without modifications and without exposing sensitive data.

Mentioned projects:

  • Phala (TEE)
  • Zama (FHE)
  • Nillion (MPC)
  • EZKL (ZKML)
  • Lagrange (zkML + verification infra)

This is the most important layer for enterprise adoption.

5. Agents & Orchestration Layer

The report analyzes how autonomous agents are becoming the new “interface” of AI.

A full stack includes:

  • base model (LLM or SLM)
  • tooling (API, wallet, browser automation)
  • framework (ElizaOS, Daydreams, Olas, Questflow)
  • communication standards
  • multi-agent coordination
  • verifiable integrity (tamper-proof prompt, verified reasoning)

Blockchains unlock for agents:

  • identity
  • reputation
  • self-custodial payments
  • trustless access to financial services
  • auditability

Agents will be the primary “users” of blockchain in the next 5 years.

6. Applications Layer

The final level: apps built on the entire stack.

Examples:

  • trading agents
  • autonomous DeFi bots
  • autonomous browsers
  • cybersecurity systems
  • AI-powered data labeling
  • multi-agent universes for gaming, discovery, or e-commerce
  • decentralized recommendation engines

deAI apps function like regular AI, but with three differences:

  1. transparency
  2. verifiability
  3. interoperability with crypto

Why Now? The 5 Forces Driving deAI

Messari identifies five megatrends that create a perfect environment for the growth of decentralized AI:

  1. Inference Demand in Vertical Boom
  2. Depletion of Public Data and Demand for Proprietary Data
  3. Explosion of AI agents that must transact autonomously
  4. Global War for Talent and Prohibitive Compute Costs
  5. Advancements in the Decentralization of Training and Verification

Centralized AI cannot meet all needs: complementarity is required.

Conclusion: deAI is the Foundation of Open, Verifiable, and Participatory AI

Decentralized AI is not a trend: it is a structural response.
As models grow and the power of Big Tech concentrates, the need to:

  • verify
  • decentralize
  • certify
  • coordinate
  • offset
  • protect
  • distribute

becomes central.

DeAI is the infrastructure that enables AI to be not only powerful, but also:

  • open
  • secure
  • distributed
  • globally accessible
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Republic Europe Offers Indirect Kraken Stake via SPV

Republic Europe Offers Indirect Kraken Stake via SPV

Republic Europe launches SPV for European retail access to Kraken equity pre-IPO.
Share
bitcoininfonews2026/01/30 13:32
cpwrt Limited Positions Customer Support as a Strategic Growth Function

cpwrt Limited Positions Customer Support as a Strategic Growth Function

For many growing businesses, customer support is often viewed as a cost center rather than a strategic function. cpwrt limited challenges this perception by providing
Share
Techbullion2026/01/30 13:07
How is the xStocks tokenized stock market developing?

How is the xStocks tokenized stock market developing?

Author: Heechang Compiled by: TechFlow xStocks offers a tokenized stock service, allowing investors to trade tokenized versions of popular US stocks like Tesla in real time. While still in its early stages, it’s already showing some interesting signs of growth. Observation 1: Trading is concentrated in Tesla (TSLA) As in many emerging markets, trading activity has quickly concentrated on a handful of stocks. Data shows a high concentration of trading volume in the most well-known and volatile stocks, with Tesla being the most prominent example. This concentration is not surprising: liquidity tends to accumulate in assets that retail investors already favor, and early adopters often use familiar high-beta stocks to test new infrastructure. Observation 2: Liquidity decreases on weekends Data shows that on-chain equity trading volume drops to 30% or less of weekday levels over the weekend. Unlike crypto-native assets, which trade seamlessly around the clock, tokenized stocks still inherit the behavioral inertia of traditional market trading hours. Traders appear less willing to trade when reference markets (such as Nasdaq and the New York Stock Exchange) are closed, likely due to concerns about arbitrage, price gaps, and the inability to hedge positions off-chain. Observation 3: Prices move in line with the Nasdaq Another key signal comes from pricing behavior during the initial launch period. Initially, xStocks tokens traded at a significant premium to their Nasdaq counterparts, reflecting market enthusiasm and potential friction in bridging fiat liquidity. However, these premiums gradually diminished over time. Current trading patterns show that the token price is at the upper limit of Tesla's intraday price range and is highly consistent with the Nasdaq reference price. Arbitrageurs appear to be maintaining this price discipline, but there are still small deviations from the intraday highs, indicating some market inefficiencies that may present opportunities and risks for active traders. New opportunities for Korean stock investors? South Korean investors currently hold over $100 billion in US stocks, with trading volume increasing 17-fold since January 2020. Existing infrastructure for South Korean investors to trade US stocks is limited by high fees, long settlement times, and slow cash-out processes, creating opportunities for tokenized or on-chain mirror stocks. As the infrastructure and platforms supporting on-chain US stock markets continue to improve, a new group of South Korean traders will enter the crypto market, which is undoubtedly a huge opportunity.
Share
PANews2025/09/18 08:00