SDD (Spec-Driven Development) is being positioned as the "right way" to build with AI. For certain problems such as API integrations with strict contracts, regulated industries with compliance requirements, this works well. But for exploratory development like most of the cases? SDD breaks down fast. Stop chasing perfect upfront specifications. The future isn't about better specs, it's about better context.SDD (Spec-Driven Development) is being positioned as the "right way" to build with AI. For certain problems such as API integrations with strict contracts, regulated industries with compliance requirements, this works well. But for exploratory development like most of the cases? SDD breaks down fast. Stop chasing perfect upfront specifications. The future isn't about better specs, it's about better context.

The Limits of Spec-Driven Development

In the 1990s, developers wrote long functional specifications before coding. By 2010, agile replaced the idea that you should define everything up front. Today, as AI coding struggles with quality, the old playbook is returning: writing detailed specs in hopes of getting reliable outcomes.

On paper, spec-driven development (SDD) feels like the perfect solution: write a detailed spec first, then let the model generate “correct” code from it.

But reality hits hard.

Just like the pattern we have seen before: when we try to “solve unpredictability” by writing more things down upfront, the development fails, and always for the same reason — Reality changes faster than specs do.

\

What Is Spec-Driven Development?

Spec-driven development (SDD) is the practice of writing detailed upfront specifications first, and then using AI to generate code from them. These specs aim to define a system’s behavior, requirements, constraints, and interfaces precisely enough for an AI model to produce code reliably.

But it overlooks the fact that static artifacts can't contain all the context, regardless of how precise your specs are.

Let’s break this down.

\

Where Spec-Driven Development Fails

SDD are failing for four reasons that no amount of prompting or AI models have fixed yet:

1. Specs Are Expensive to Maintain

Writing comprehensive specs takes a significant amount of time. In addition, software development is an interactive process. With so many variables in play (requirements changing, constraints shifting, and new insights emerging during implementation), keeping specs in sync with the code creates a maintenance tax that grows with system complexity. Instead of reducing overhead, SDD often doubles it.

Suppose you’re building a subscription invoices system. You write a spec describing billing cycles, proration rules, tax conditions, and grace periods. But a week later, finance says, “We need European VAT handling”.

Updating the code is much easier than updating the spec first. But this leads to a situation where the code, the spec, and the team’s mental model no longer match.

As a result, every update becomes documentation debt disguised as engineering discipline.

2. Specs Don't Reflect All Context

Specs are used to describe what a system should do, but they can't explain why it works that way. And the “why” carries the real context:

  • Why certain assumptions were made
  • Why specific tradeoffs were chosen
  • What the team learned while iterating

What real-world constraints shaped the solution. But these things never make it into the spec. And the missing context is where the real problems show up:

  • Edge cases only appear when the system is used.
  • Performance issues only appear under load.
  • User behavior only appears after launch.

So LLMs don’t struggle because the spec is “wrong.” They struggle because the spec can never capture all the context they need.

3. Over-specification creates the illusion of completeness

A detailed spec feels like control. It gives teams a sense that all cases are covered. But this confidence is often false.

Software development is exploratory. The most important insights come after you begin building. Being too fixed to a static spec leads to less iteration, creativity, and emergent solutions. It makes development into a brittle, waterfall-like process, just with AI in the loop.

4. The wrong level of abstraction

SDD tools today are optimized for parsing specs, not interpreting intent.

Most SDD approaches focus on implementation detail - The hows:

  • Field definitions
  • Enums
  • Request/response schemas
  • Function signatures

But what matters more is the whys behind:

  • Intent
  • Constraints
  • Context

Most current SDD tools (including systems like Kiro) generate code directly from these low-level specs. They can produce accurate scaffolding, but are missing context for resilient behavior. The result is code that is structurally correct but misaligned with the actual intent of the system.

\

What Actually Matters — Context Engineering

The missing piece in AI coding isn't more detailed specs, but better preserved context. This means AI-native development should:

1. Start with intent

Instead of jumping into writing specs, the workflow should begin by defining the core context. For instance, the problem you’re solving and why, the non-negotiable constraints, and the assumptions you have in the context.

2. Keep context up to date

AI-led development should be just as iterative as traditional software development. When requirements change or new insights come up, the context the model uses needs to be refreshed so the team and the AI stay aligned.

3. Specs should follow the codebase

Specs should be living artifacts and aligned with the actual implementation.

4. Preserve the whys, and not just requirements

Code shouldn’t just be about what it does, but also explain why it was built that way.

\

The Path Forward

For stable contracts and well-understood domains, spec-driven approaches can work great. But for exploratory development that comes with evolving requirements, context-driven approaches adapt better.

Most real-world projects have both stable contracts at system boundaries, adaptive iteration within them. This is the principle that shaped Yansu, our AI-led coding platform originally built for internal use to serve PE firms and mid-market engineering teams. The philosophy translated as a dynamic software development lifecycle (SDLC) in Yansu that:

  • Captures intent and constraints from discussions, examples, and tribal knowledge
  • Updates context and specs as understanding evolves
  • Simulates scenarios that reflect real system behavior before writing any code
  • Embeds explicitly the "whys" in the code, so the team can trace back to the reason behind each line

\

Market Opportunity
Spectral Logo
Spectral Price(SPEC)
$0.1211
$0.1211$0.1211
+1.76%
USD
Spectral (SPEC) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

China Blocks Nvidia’s RTX Pro 6000D as Local Chips Rise

China Blocks Nvidia’s RTX Pro 6000D as Local Chips Rise

The post China Blocks Nvidia’s RTX Pro 6000D as Local Chips Rise appeared on BitcoinEthereumNews.com. China Blocks Nvidia’s RTX Pro 6000D as Local Chips Rise China’s internet regulator has ordered the country’s biggest technology firms, including Alibaba and ByteDance, to stop purchasing Nvidia’s RTX Pro 6000D GPUs. According to the Financial Times, the move shuts down the last major channel for mass supplies of American chips to the Chinese market. Why Beijing Halted Nvidia Purchases Chinese companies had planned to buy tens of thousands of RTX Pro 6000D accelerators and had already begun testing them in servers. But regulators intervened, halting the purchases and signaling stricter controls than earlier measures placed on Nvidia’s H20 chip. Image: Nvidia An audit compared Huawei and Cambricon processors, along with chips developed by Alibaba and Baidu, against Nvidia’s export-approved products. Regulators concluded that Chinese chips had reached performance levels comparable to the restricted U.S. models. This assessment pushed authorities to advise firms to rely more heavily on domestic processors, further tightening Nvidia’s already limited position in China. China’s Drive Toward Tech Independence The decision highlights Beijing’s focus on import substitution — developing self-sufficient chip production to reduce reliance on U.S. supplies. “The signal is now clear: all attention is focused on building a domestic ecosystem,” said a representative of a leading Chinese tech company. Nvidia had unveiled the RTX Pro 6000D in July 2025 during CEO Jensen Huang’s visit to Beijing, in an attempt to keep a foothold in China after Washington restricted exports of its most advanced chips. But momentum is shifting. Industry sources told the Financial Times that Chinese manufacturers plan to triple AI chip production next year to meet growing demand. They believe “domestic supply will now be sufficient without Nvidia.” What It Means for the Future With Huawei, Cambricon, Alibaba, and Baidu stepping up, China is positioning itself for long-term technological independence. Nvidia, meanwhile, faces…
Share
BitcoinEthereumNews2025/09/18 01:37
Ripple-Backed Evernorth Faces $220M Loss on XRP Holdings Amid Market Slump

Ripple-Backed Evernorth Faces $220M Loss on XRP Holdings Amid Market Slump

TLDR Evernorth invested $947M in XRP, now valued at $724M, a loss of over $220M. XRP’s price dropped 16% in the last 30 days, leading to Evernorth’s paper losses
Share
Coincentral2025/12/26 03:56
Lovable AI’s Astonishing Rise: Anton Osika Reveals Startup Secrets at Bitcoin World Disrupt 2025

Lovable AI’s Astonishing Rise: Anton Osika Reveals Startup Secrets at Bitcoin World Disrupt 2025

BitcoinWorld Lovable AI’s Astonishing Rise: Anton Osika Reveals Startup Secrets at Bitcoin World Disrupt 2025 Are you ready to witness a phenomenon? The world of technology is abuzz with the incredible rise of Lovable AI, a startup that’s not just breaking records but rewriting the rulebook for rapid growth. Imagine creating powerful apps and websites just by speaking to an AI – that’s the magic Lovable brings to the masses. This groundbreaking approach has propelled the company into the spotlight, making it one of the fastest-growing software firms in history. And now, the visionary behind this sensation, co-founder and CEO Anton Osika, is set to share his invaluable insights on the Disrupt Stage at the highly anticipated Bitcoin World Disrupt 2025. If you’re a founder, investor, or tech enthusiast eager to understand the future of innovation, this is an event you cannot afford to miss. Lovable AI’s Meteoric Ascent: Redefining Software Creation In an era where digital transformation is paramount, Lovable AI has emerged as a true game-changer. Its core premise is deceptively simple yet profoundly impactful: democratize software creation. By enabling anyone to build applications and websites through intuitive AI conversations, Lovable is empowering the vast majority of individuals who lack coding skills to transform their ideas into tangible digital products. This mission has resonated globally, leading to unprecedented momentum. The numbers speak for themselves: Achieved an astonishing $100 million Annual Recurring Revenue (ARR) in less than a year. Successfully raised a $200 million Series A funding round, valuing the company at $1.8 billion, led by industry giant Accel. Is currently fielding unsolicited investor offers, pushing its valuation towards an incredible $4 billion. As industry reports suggest, investors are unequivocally “loving Lovable,” and it’s clear why. This isn’t just about impressive financial metrics; it’s about a company that has tapped into a fundamental need, offering a solution that is both innovative and accessible. The rapid scaling of Lovable AI provides a compelling case study for any entrepreneur aiming for similar exponential growth. The Visionary Behind the Hype: Anton Osika’s Journey to Innovation Every groundbreaking company has a driving force, and for Lovable, that force is co-founder and CEO Anton Osika. His journey is as fascinating as his company’s success. A physicist by training, Osika previously contributed to the cutting-edge research at CERN, the European Organization for Nuclear Research. This deep technical background, combined with his entrepreneurial spirit, has been instrumental in Lovable’s rapid ascent. Before Lovable, he honed his skills as a co-founder of Depict.ai and a Founding Engineer at Sana. Based in Stockholm, Osika has masterfully steered Lovable from a nascent idea to a global phenomenon in record time. His leadership embodies a unique blend of profound technical understanding and a keen, consumer-first vision. At Bitcoin World Disrupt 2025, attendees will have the rare opportunity to hear directly from Osika about what it truly takes to build a brand that not only scales at an incredible pace in a fiercely competitive market but also adeptly manages the intense cultural conversations that inevitably accompany such swift and significant success. His insights will be crucial for anyone looking to understand the dynamics of high-growth tech leadership. Unpacking Consumer Tech Innovation at Bitcoin World Disrupt 2025 The 20th anniversary of Bitcoin World is set to be marked by a truly special event: Bitcoin World Disrupt 2025. From October 27–29, Moscone West in San Francisco will transform into the epicenter of innovation, gathering over 10,000 founders, investors, and tech leaders. It’s the ideal platform to explore the future of consumer tech innovation, and Anton Osika’s presence on the Disrupt Stage is a highlight. His session will delve into how Lovable is not just participating in but actively shaping the next wave of consumer-facing technologies. Why is this session particularly relevant for those interested in the future of consumer experiences? Osika’s discussion will go beyond the superficial, offering a deep dive into the strategies that have allowed Lovable to carve out a unique category in a market long thought to be saturated. Attendees will gain a front-row seat to understanding how to identify unmet consumer needs, leverage advanced AI to meet those needs, and build a product that captivates users globally. The event itself promises a rich tapestry of ideas and networking opportunities: For Founders: Sharpen your pitch and connect with potential investors. For Investors: Discover the next breakout startup poised for massive growth. For Innovators: Claim your spot at the forefront of technological advancements. The insights shared regarding consumer tech innovation at this event will be invaluable for anyone looking to navigate the complexities and capitalize on the opportunities within this dynamic sector. Mastering Startup Growth Strategies: A Blueprint for the Future Lovable’s journey isn’t just another startup success story; it’s a meticulously crafted blueprint for effective startup growth strategies in the modern era. Anton Osika’s experience offers a rare glimpse into the practicalities of scaling a business at breakneck speed while maintaining product integrity and managing external pressures. For entrepreneurs and aspiring tech leaders, his talk will serve as a masterclass in several critical areas: Strategy Focus Key Takeaways from Lovable’s Journey Rapid Scaling How to build infrastructure and teams that support exponential user and revenue growth without compromising quality. Product-Market Fit Identifying a significant, underserved market (the 99% who can’t code) and developing a truly innovative solution (AI-powered app creation). Investor Relations Balancing intense investor interest and pressure with a steadfast focus on product development and long-term vision. Category Creation Carving out an entirely new niche by democratizing complex technologies, rather than competing in existing crowded markets. Understanding these startup growth strategies is essential for anyone aiming to build a resilient and impactful consumer experience. Osika’s session will provide actionable insights into how to replicate elements of Lovable’s success, offering guidance on navigating challenges from product development to market penetration and investor management. Conclusion: Seize the Future of Tech The story of Lovable, under the astute leadership of Anton Osika, is a testament to the power of innovative ideas meeting flawless execution. Their remarkable journey from concept to a multi-billion-dollar valuation in record time is a compelling narrative for anyone interested in the future of technology. By democratizing software creation through Lovable AI, they are not just building a company; they are fostering a new generation of creators. His appearance at Bitcoin World Disrupt 2025 is an unmissable opportunity to gain direct insights from a leader who is truly shaping the landscape of consumer tech innovation. Don’t miss this chance to learn about cutting-edge startup growth strategies and secure your front-row seat to the future. Register now and save up to $668 before Regular Bird rates end on September 26. To learn more about the latest AI market trends, explore our article on key developments shaping AI features. This post Lovable AI’s Astonishing Rise: Anton Osika Reveals Startup Secrets at Bitcoin World Disrupt 2025 first appeared on BitcoinWorld.
Share
Coinstats2025/09/17 23:40